INTRODUCTION

Infancy is a period of rapid growth. Weaning food is recommended for the overall growth and complete development after 6 months. In India, it has been observed that infants do not serve special foods. Food which is prepared for other members, same food is served to infants just after altering consistency. In urban areas where mothers are aware, baby food is fed to the infants but are quite expensive. Most of these weaning foods are prepared by using cereals.

However, millets are ignored in the formulation of weaning food mix. Though that are unique among the cereals because of their richness in calcium, dietary fibre, polyphenols and protein (Devi et al., 2011), fat, essential amino acids particularly methionine and cysteine (Obilana and Manyasa, 2002). It is well known fact that cereals and millets possess many antinutritional factors which can be reduced by applying various processing techniques. Studies have revealed that germination enhances the nutritive value of cereals and legumes (Marero et al., 1989a; Marero et al., 1989b; Hansen et al., 1989) and decrease the levels of antinutrients present in cereals (Nkama and Ikwelle, 1998).

In the present study finger millet, pearl millet and soybean were used to develop weaning food mix. Finger millet contains high levels of calcium, iron and manganese, its protein is relatively better balanced; it contains more lysine, threonine and valine than other millets. Its carbohydrate, protein, fiber and mineral content are comparable to cereal. Nutritionally pearl millet is comparable and even superior to major cereals with respect of energy value, protein, fat and minerals. It makes an important contribution to human diet due to high levels of calcium, iron, zinc, lipids and high quality proteins. Besides this, millets are rich source of phytochemicals such as phinolics, βglucan, lignans, phytytes sterols, tocopherols, dietary fibers and carotenoids, which act as antioxidants and boost our immune system (Devi PB et al. 2011, Liu RH 2007, Chandrasekara, Patel et al., 2015 and Shahidi 2011). Soybean stands first to supply both quantity and quality of the protein.
OBJECTIVES

(i) To formulate low cost weaning food by mixing Pearl millet, Finger millet and Soybean.

(ii) To conduct the sensory evaluation and nutritional analysis of formulated weaning food.

METHODOLOGY

The study was conducted into three parts, process treatment to grain seed, formula optimization to select the best weaning food mix among the various combinations of grains and evaluate the nutritional composition of the selected weaning food mix to judge its possible use in the infant diet. A coast was calculated, dietary recommendations were estimated and a shelf life was also studied as separate part of this long study.

Grain Processing

Both the millets were germinated and soybean was pressure cooked and dehulled before milled to fine dry powder. The standardized processing illustrated in figure 1.

Formula Optimization

Formula optimization was carried out by mixing processed powder of White Finger millet, Pearl millet and Soybean. Combination was made in such a way that, the quantity of any one ingredient ranged from 10 to 50 percent (at an interval of 10 percent) and rest two ingredients in equal quantity to make 100 percent. Thus total fifteen combinations of weaning food formulations were prepared into three phases. In each combination 10 percent milk powder and 40 percent powdered sugar were added.

Before serving, 25 g of weaning food mix was added in 150ml of water and cooked for 3 minutes after getting boiled and served immediately to the semi trained panel of 7 judges into 3 replications for sensory evaluation using 9 point Hedonic rating scale. From each phase one highly accepted mix was selected and further sensory and nutritional analysis were carried out. The formulation scored sensorily the heights, considered as experimental formulation and used for the further experimentation.

Nutritional Evaluation

Highly accepted three mixes were analyzed in triplicate for proximate composition (AOAC, 1980). Total carbohydrate was calculated by difference and energy content was calculated by factorial method. Irons, calcium, crude fiber, ash were analyzed by AOAC (1990) method. Protein was analyzed by Kjeldahl method while fat content by solvent extraction method.

RESULTS AND DISCUSSION

Results obtained are presented into two subheadings, formula optimization and analysis of nutritional composition. Results on coast calculation, shelf life study and dietary recommendations are also mentioned at the last in nutshell from the other part of this long study.

Formula Optimization

The best accepted combination from each phase found is listed in Table 1. Among that combinations formula for phase III (Pearl millet:Finger millet:Soybean in the ratio of 30:35:35) scored the highest in all the sensory attributes. Thus it was selected as an experimental formulation.
Table 1: Phase wise best accepted formulations

<table>
<thead>
<tr>
<th>Phase</th>
<th>Pearl Millet (%)</th>
<th>Finger Millet (%)</th>
<th>Soybean (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>35</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>II</td>
<td>40</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Nutritional Composition

The protein content for phase II formulation was found the highest followed by Phase III and both were significant. However, both were significantly differ from Phase I formulation and control. The experimentally selected mix contains 17.56% more protein as compared to control. That is beneficial for the infants for their rapid growth.

The fat content was increased significantly in all the three formulations as compared to control. The rise was found slightly less than half. Thus the developed formulation

Table 2: Nutritional composition of the selected weaning food formulations

<table>
<thead>
<tr>
<th>Phase</th>
<th>Protein (g%)</th>
<th>Fat (g%)</th>
<th>Ash (g%)</th>
<th>Fiber (g%)</th>
<th>Carbohydrate (g%)</th>
<th>Calcium (mg%)</th>
<th>Iron (mg%)</th>
<th>Vitamin C (mg%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>11.88±0.50</td>
<td>6.32±0.25</td>
<td>2.15±0.12</td>
<td>1.55±0.17</td>
<td>46.41±1.30</td>
<td>206.80±8.07</td>
<td>6.19±0.48</td>
<td>35.27±4.10</td>
</tr>
<tr>
<td>II</td>
<td>14.61±0.24</td>
<td>6.59±0.27</td>
<td>2.73±0.33</td>
<td>1.35±0.15</td>
<td>39.80±1.79</td>
<td>205.13±6.90</td>
<td>1.55±0.03</td>
<td>56.77±4.62</td>
</tr>
<tr>
<td>III</td>
<td>13.52±0.35</td>
<td>6.75±0.42</td>
<td>2.53±0.18</td>
<td>1.50±0.11</td>
<td>48.34±1.06</td>
<td>227.57±13.14</td>
<td>2.77±0.18</td>
<td>38.73±4.60</td>
</tr>
<tr>
<td>Control</td>
<td>11.5±0.44</td>
<td>4.68±0.45</td>
<td>3.88±0.24</td>
<td>2.23±0.09</td>
<td>44.24±2.25</td>
<td>187.06±4.49</td>
<td>2.13±0.20</td>
<td>39.67±4.19</td>
</tr>
<tr>
<td>SEM</td>
<td>0.40</td>
<td>0.36</td>
<td>0.23</td>
<td>0.13</td>
<td>1.67</td>
<td>8.74</td>
<td>0.27</td>
<td>2.96</td>
</tr>
<tr>
<td>CD</td>
<td>1.22</td>
<td>1.11</td>
<td>0.71</td>
<td>0.41</td>
<td>5.13</td>
<td>26.94</td>
<td>0.85</td>
<td>9.11</td>
</tr>
<tr>
<td>CV</td>
<td>6.14</td>
<td>11.81</td>
<td>17.19</td>
<td>16.05</td>
<td>7.45</td>
<td>8.46</td>
<td>17.37</td>
<td>13.87</td>
</tr>
</tbody>
</table>

Values are Mean ± SEM of nutritional analysis

Means bearing the same superscript within the column do not differ significantly (p<0.05)

Cereal based weaning food mix available in market treated as control

beneficial for infants as they required more energy per unit of weight as compared to adults for their constant activity.

Carbohydrate was increased for Phase I and III formulations while decreased in Phase II mixes as compared to control. However the difference was just 5 g%.

Ash and fiber content was decreased significantly at 25.14% and 32.00%, respectively.

Calcium and Iron, the most important minerals for bone and teeth development and blood, respectively and thus found the most valuable for the children were increased. The positive change for experimental formulation were 21.66 mg% and 30.05 mg% for Calcium and Iron, respectively as compared to control.

Vitamin C content was almost similar for both control as well as experimental formulation.

Chart 1: Percentage change in nutritional composition of experimental mix

Other finding

Cost of formulated mix was just ₹ 5.00 per 100 g, which is about 5 times less than the most weaning food mixes available in the market. One serving of formulated millet based weaning food provide 3.38g protein, 1.69g fat, 12g carbohydrate, 56.89mg calcium and 0.69g iron. To meet the nutritional need of infants, 100g of supplementary mix is recommended daily. The product can be stored for 4 months under ambient condition.

CONCLUSION

Millet based nutritionally balanced, homemade, low cost weaning food could be formulated. That contained more protein, fat, calcium and iron, the most beneficial nutrients for infants. The product could be stored for sufficient time. That could be easily prepared and fed by rural mothers for their infants as supplementary food.

REFERENCES

Received: September 2017 : Accepted: November 2017